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Introduction: Beyond the 
performance benchmark

AI has embedded itself in the software development lifecycle (SDLC) at an 
extraordinary speed. Tools such as Claude Code, Cursor, and GitHub Copilot are 
increasingly standard and necessary tools for software developers. Underlying 
all of these tools are Large Language Models (LLMs), some general purpose 
from companies like OpenAI, Anthropic, Meta, and Google, and some specially 
built for coding use cases.

Understanding the true capabilities of these models is of critical importance 
as the industry develops. However, the typical methods for evaluating these 
capabilities do not give a complete, high-resolution picture. A primary evaluation 
approach focuses on assessing LLM performance against benchmarks that 
test their ability to solve difficult coding challenges—what we consider to be an 
important but narrow test. 

This relentless focus on performance benchmarks leads to what experts 
describe as “super spiky capability distributions.” As we will show in this report, 
this focus on performance benchmarks leads to LLMs that can solve difficult 
coding challenges, but do not necessarily write good code—that is, code that is 
reliable, secure, and maintainable. 

It is critical that we move beyond relying only on performance benchmarks, 
and start to understand the full mosaic of capabilities of coding models, their 
personalities and habits, good and bad. By doing so, we can ensure that we have 
a more nuanced understanding that helps us more consistently select the best 
model for the job to be done.

https://www.sonarsource.com/
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Our approach: A deep analysis of 
LLM-generated code
To move beyond the standard performance benchmarks, Sonar developed 
a proprietary analysis framework for assessing LLM-generated code. This 
approach leverages the core strengths of the SonarQube Enterprise static 
analysis engine, which is built on over 16 years of experience in detecting 
complex bugs, vulnerabilities, and code smells in enterprise-grade software. 

We combined this deep code analysis with best practices from coding model 
evaluations, applying it to five leading LLMs: Anthropic's Claude Sonnet 
4 and 3.7, OpenAI's GPT-4o, Meta's Llama 3.2 90B, and the open source 
OpenCoder-8B. Each model was tasked with completing over 4,442 distinct Java 
programming assignments from recognized sources, including MultiPL-E-mbpp-
java, MultiPL-E-humaneval-java,and ComplexCodeEval.

Our goal was to provide a clear, objective analysis that creates opportunities 
for improvement and informed decision-making. For model developers, our 
findings offer a roadmap that goes beyond traditional performance benchmark 
scores, highlighting concrete areas to improve their coding models. For software 
developers and their organizations, our work provides critical insights needed to 
choose the right models for the right tasks, and ensure they are used safely and 
effectively.

https://www.sonarsource.com/
https://www.sonarsource.com/
https://www.sonarsource.com/products/sonarqube/
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2409.10280
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Before we discuss the unique personalities of each LLM, it is important to 
highlight the common foundation of strength and weaknesses that all models 
share. This section will detail these shared characteristics, starting with the 
powerful capabilities that have driven their widespread adoption.

Shared strengths
The code generation capabilities of large language models are fundamental to 
their growing application in software development. Our benchmark analysis of 
the five prominent models provides quantitative data confirming a consistent set 
of shared competencies.

The benchmark data point to a set of significant and consistent strengths shared 
across the evaluated models. The following sections explore these key areas of 
proficiency in greater detail.

MultiPL-E 
benchmarks Claude Sonnet 4 Claude 3.7 

Sonnet GPT-4o Llama 3.2 90B OpenCoder-8B

HumanEval 
(158 tasks) 95.57% 84.28% 73.42% 61.64% 64.36%

MBPP  
(385 tasks) 69.43% 67.62% 68.13% 61.40% 58.81%

Weighted test 
Pass@1 avg 77.04% 72.46% 69.67% 61.47% 60.43%

A foundation of shared 
strengths and shared flaws

Table 1: LLM performance on MultiPL-E Java benchmarks

https://www.sonarsource.com/
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Syntactic and boilerplate generation 
The ability to generate syntactically valid code is a fundamental requirement for 
a coding assistant. The design of our benchmarks provides a direct measure 
of this skill, as syntactically flawless code is a prerequisite for passing any 
functional test. The high pass rates recorded in the table are therefore a clear 
indicator of this reliability. For example, Claude Sonnet 4's success rate of 
95.57% on HumanEval demonstrates a very high capability to produce valid, 
executable code.

Technical competence
Beyond correct syntax, the models demonstrate robust capabilities in algorithmic 
problem-solving. The benchmark problems are, by design, direct tests of 
this technical competence, requiring the application of algorithms and data 
structures. The “weighted test Pass@1 average” provides a balanced measure 
of this capability, and the scores achieved by models like Claude 3.7 Sonnet 
(72.46%) and GPT-4o (69.67%) confirm a high degree of reliability in producing 
correct solutions.

Conceptual translation 
Finally, our analysis points to the models’ notable capability for conceptual 
translation across different programming languages. The provided benchmark 
data reflects performance specifically on MultiPL-E Java, where the leading 
models demonstrate a high degree of proficiency.

This strength, however, is not confined to a single language family. In a parallel 
evaluation using Python, we observed a consistent and similarly high level 
of performance. Maintaining competence across two syntactically diverse 
languages like Java and Python is a clear indicator of the models' adaptability. 
It suggests their core capability is understanding abstract logic and translating 
it across linguistic environments, confirming their utility as versatile tools for 
developers working with varied technology stacks.

https://www.sonarsource.com/
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These issues are further underscored by the severity of the vulnerabilities 
introduced. Our analysis found that a majority of vulnerabilities for every model 
are of ‘BLOCKER’ severity, the highest possible rating.

Shared flaws
While the shared strengths drive AI’s utility in software development and drive 
adoption, we also found a consistent pattern of shared weaknesses that, when 
unrecognized and unaddressed, diminishes the overall effectiveness of the 
coding models and undermines the integrity of the code itself.

A lack of security consciousness
The single most alarming shared trait across all models is a fundamental lack 
of security awareness. While the exact prevalence varies between models, all 
evaluated LLMs produce a frighteningly high percentage of vulnerabilities with 
the highest severity ratings. For Llama 3.2 90B, over 70% of its vulnerabilities are 
‘BLOCKER’; for GPT-4o, it's 62.5%; and for Claude Sonnet 4, it is nearly 60%. 

Critical flaws like path-traversal, injection and hard-coded credentials are 
common across the board. The table below breaks down the specific types of 
security vulnerabilities introduced by each model, illustrating the shared struggle 
with concepts like taint tracking and recognizing sensitive data. 

Category Claude-Sonnet 
4 (%)

Claude-3.7 
Sonnet (%)

GPT-4o 
(%)

Llama 3.2 
90B (%)

OpenCoder-8B 
(%)

Path-traversal & Injection 34.04 31.03 33.93 26.83 28.36

Hard-coded credentials 14.18 10.34 17.86 23.58 29.85

Cryptography misconfiguration 24.82 23.28 19.64 22.76 22.39

XML external entity (XXE) 10.64 15.52 13.39 19.51 5.97

Inadequate I/O error-handling 4.96 7.76 7.14 4.88 7.46

Certificate-validation omissions 2.84 4.31 2.68 0 2.99

JSON-injection risk 0.71 0 0.89 0.81 1.49

JWT signature not verified 0 0 0 0 1.49

Other 7.8 7.76 4.46 1.63 0

Table 2: Subcategories of security vulnerabilities and their origins (% of total vulnerabilities for model)

https://www.sonarsource.com/
https://docs.sonarsource.com/sonarqube-server/latest/instance-administration/analysis-functions/instance-mode/standard-experience/
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This is not a matter of occasional hallucination but rather a structural failure 
rooted in the LLMs’ foundational design and training. LLMs struggle to prevent 
injection flaws because doing so requires taint-tracking from an untrusted 
source to a sensitive sink, a non-local data flow analysis that is beyond the 
scope of their typical context window. They generate hard-coded secrets (like 
passwords) because these flaws exist in their training data. 

LLM BLOCKER CRITICAL MAJOR MINOR

Claude Sonnet 4 59.57 28.37 5.67 6.38

Claude 3.7 Sonnet 56.03 28.45 5.17 10.34

GPT-4o 62.50 23.21 5.36 8.93

Llama 3.2 90B 70.73 22.76 1.63 4.88

OpenCoder-8B 64.18 26.87 1.49 7.46

Table 3: Vulnerability distribution (% of total vulnerabilities)

https://www.sonarsource.com/
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A struggle with engineering discipline
All LLMs evaluated demonstrate a consistent struggle with the core tenets of 
software engineering, particularly in areas that require a global, context-aware 
understanding of the application. Severe bugs like resource leaks (e.g., failing 
to close file streams) and API contract violations (e.g., ignoring critical error 
return values) appear consistently across all models. For example, SonarQube 
rule java:S2095 (“Resources should be closed”) flagged 54 instances for Claude 
Sonnet 4, 25 for GPT-4o, and 50 for Llama 3.2 90B.

The table below details the most common bug categories.

Category Claude Sonnet 
4 (%)

Claude 3.7 
Sonnet (%) GPT-4o (%) Llama 3.2 90B 

(%)
OpenCoder-8B 
(%)

Control-flow 
mistake 14.83 23.62 48.15 31.06 21.37

API contract 
violation 10.29 14.12 8.64 14.9 19.35

Exception 
handling 16.75 16.71 11.6 14.39 14.52

Resource 
management / 
leak

15.07 8.36 7.41 12.88 9.68

Type-safety / 
casts 11.24 12.97 7.9 6.82 7.66

Concurrency / 
threading 9.81 1.44 1.73 1.26 2.82

Null / data-
value issues 7.89 7.49 8.89 5.81 6.85

Performance / 
structure 4.31 6.34 3.95 2.78 5.24

Pattern / regex 2.63 1.15 0.74 0.25 2.42

Data-structure 
bug 1.44 1.15 0 1.01 1.61

Serialization / 
serializable 0 0.58 0 0.76 1.61

Other 5.74 6.05 0.99 8.08 6.85

Table 4: Subcategories of bugs and their origins (% of total bugs for model)

https://www.sonarsource.com/
https://rules.sonarsource.com/java/RSPEC-2095/
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This overwhelming proportion of code smells suggests an inherent tendency in 
LLMs towards generating syntactically correct but structurally suboptimal code. 
The specific types of code smells reveal a consistent struggle with non-local 
issues like dead code and a lack of adherence to design best practices. As these 
data demonstrate, every LLM model is actively generating a legacy of technical 
debt from the moment it writes its first line of code. 

An inherent bias towards messy code
Perhaps the most fundamental shared flaw is a deep, inherent tendency towards 
producing “messy” code. The data are stark and unambiguous: for all models 
evaluated, code smells constitute over 90% of all issues found. These are not 
functional bugs but indicators of poor structure, low maintainability, and high 
complexity that lead to long-term technical debt.

LLM % Bugs % Vulnerabilities % Code smells

Claude-Sonnet-4 5.85% 1.95% 92.19%

Claude-3.7-Sonnet 5.35% 1.76% 92.88%

GPT-4o 7.41% 2.05% 90.54%

Llama 3.2 90B 7.71% 2.38% 89.90%

OpenCoder-8B 6.33% 1.72% 91.95%

Table 5: Distribution of issue types by LLM (% of total issues)

https://www.sonarsource.com/
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These findings paint a clear picture of the shared baseline for the current 
generation of LLMs. On one hand, they share a powerful set of strengths, from 
generating syntactically correct code to solving complex algorithmic problems, 
which makes their emergence so compelling. On the other hand, they are all 
built with the same blind spots: a consistent inability to write secure code, a 
struggle with engineering discipline, and an inherent bias towards generating 
technical debt.

To effectively leverage AI in coding, developers need to be prepared to 
recognize and compensate for the weaknesses in the models. Understanding 
the shared strengths and flaws is a crucial first step. However, just as every 
developer has their own personality and coding style, LLMs also exhibit their 
own individual styles. Security, quality, and reliability issues come to life in 
different ways in different models, and it is crucial to understand the nuances to 
get the best results. 

Category
Claude 
Sonnet 4 
(%)

Claude 3.7 
Sonnet  
(%)

GPT-4o  
(%)

Llama 3.2 90B 
(%)

OpenCoder-8B 
(%)

Dead / unused / redundant 
code 14.83 17.43 26.3 34.82 42.74

Design / framework best 
practices 22.26 18.58 20.81 18.84 12.45

Assignment / field / scope 
visibility 11.96 15.35 13.21 11.32 11.95

Collection / generics / 
param / type 13.94 11.23 9.92 9.03 7.89

Regex / pattern / string / 
format 13.7 11.8 7.36 6.81 5.29

Cognitive / computational 
complexity 4.25 8.43 3.73 2.67 2.79

Control / conditional-logic 
smell 4.67 3.91 4.03 3.02 2.2

Deprecation / obsolete 2.01 2.34 2.08 2.89 4.01

Naming / style / 
documentation 2.69 2.5 2.84 2.16 1.89

Exception-handling smell 0.05 0.08 0.06 0.02 0.06

Other 9.64 8.33 9.64 8.41 8.72

Table 6: Subcategories of code smells and their origins (% of total code smells for model)

https://www.sonarsource.com/
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If the LLMs have many shared strengths and flaws, why does each LLM’s 
code feel so different in production? This section confronts that apparent 
contradiction. Our analysis shows that each LLM has a unique and inherent style, 
a measurable “coding personality.” 

Coding personality traits
The evidence for these distinct coding personalities is not anecdotal—it is 
quantifiable in the most basic structural metrics of the generated code. 

Our analysis groups these metrics into three primary traits that define each 
model’s coding style:

• Verbosity: The sheer volume of code a model generates to solve a given set of 
tasks.

• Complexity: The structural and logical intricacy of the generated code, 
measured by metrics like cyclomatic and cognitive complexity.

• Communication and documentation: The density of comments in the code, 
which reveals the model's tendency to explain its work.

The coding personalities of 
leading LLMs

https://www.sonarsource.com/
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The following table presents the foundational data for this analysis, compiling 
these key metrics from 4,442 identical programming tasks to establish a 
quantitative baseline for each model's unique signature.

Table 7: Comparative code generation metrics across LLMs (4,442 Tasks)

Claude 
Sonnet 4

Claude 3.7 
Sonnet GPT-4o Llama 3.2 90B OpenCoder-

8B

Lines of code (LOC) 370816 288126 209994 196927 120288

Statements 148932 116433 83466 75368 41510

Functions 46235 27496 24309 22694 8338

Classes 12832 10649 10475 8996 5530

Files 4442 4442 4442 4442 4442

Comment lines 20051 56459 9692 15514 13165

Comments (%) 5.10% 16.40% 4.40% 7.30% 9.90%

Cyclomatic complexity 81667 55485 44387 37948 18850

Cognitive complexity 47649 42220 26450 20811 13965

https://www.sonarsource.com/
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Verbosity
The most immediate personality trait that emerges is a model's verbosity. An 
analysis of the total lines of code (LOC) generated to solve the same set of 
4,442 tasks reveals a huge stylistic difference. For instance, Claude Sonnet 4 
demonstrated a highly-verbose personality, generating 370,816 LOC. In stark 
contrast, the OpenCoder-8B model, which was far more concise, producing only 
120,288 LOC to address the exact same problems.

This is not a simple matter of length—it reflects a fundamental difference in 
approach. One model is expansive and comprehensive, attempting to build a 
complete, self-contained solution. The other is direct and economical, aiming 
for the quickest route to a working solution. It's not about one being better than 
the other, but this seemingly small stylistic decision has a big impact. A verbose 
model may produce code that is harder to review and navigate, while a concise 
model might omit important context or safeguards, demanding more effort from 
the human developer to make it production ready.

Complexity
Beyond sheer volume, the inherent complexity of the generated code quantifies 
the thinking style of the AI. Using metrics like cyclomatic and cognitive 
complexity, which measure the structural and logical difficulty of understanding 
code, reveals another clear personality trait. 

Claude Sonnet 4, the most verbose model, also produced the most intricate 
solutions, with a total cognitive complexity score of 47,649. This is more than 
three times the complexity of the code from the concise OpenCoder-8B, which 
scored 13,965.

This metric serves as a proxy for the model's problem-solving philosophy. A 
high-complexity score suggests a personality that favors building elaborate, 
multi-layered solutions with many interdependent parts. A low score indicates 
a more linear, straightforward approach. This thinking style directly impacts 
risk. While complex solutions may be necessary for difficult problems, they also 
create a larger surface area for bugs and increase the cognitive load on human 
developers who must maintain the code over time.

https://www.sonarsource.com/
https://www.sonarsource.com/learn/cyclomatic-complexity/
https://www.sonarsource.com/resources/cognitive-complexity/
https://www.sonarsource.com/resources/cognitive-complexity/
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Communication and documentation
A third personality trait is the models’ communication style, revealed through 
their documentation habits. The density of comments in the generated code 
indicates whether the model's style is to explain its work or to assume its logic is 
self-evident. 

Interestingly, the models are pretty different here. Claude Sonnet 3.7 proved to 
be a creative commenter, with a comment density of 16.4%. At the other end of 
the spectrum, GPT-4o proved to be less of a documentarian, with only 4.4% of 
its code consisting of comments.

This feature has real-world consequences for team collaboration and 
maintainability. A well-commented codebase can onboard new developers more 
quickly and simplify debugging. An uncommented one becomes cloudy and 
difficult to manage. The fact that models exhibit such consistent but different 
commenting behaviors underscores that they are not neutral code generators—
they are opinionated authors with distinct communication styles.

These foundational metrics, such as volume, complexity, and documentation 
are not just output statistics—they are the behavioral signatures of an AI's 
underlying personality, setting the stage for a deeper analysis of their strengths 
and weaknesses.

https://www.sonarsource.com/
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With a fuller view of their individual personality traits, we can begin to define 
“coding archetypes” for each LLM. Just as a hiring manager assesses a human 
candidate's resume, we can build a narrative dossier for each LLM, using a 
wealth of data to bring its personality to life. This approach moves beyond 
simplistic rankings to provide a nuanced understanding of each model's relative 
strengths, weaknesses, and ideal use cases, for any organization looking to 
“hire” an AI developer.

The following matrix provides a high-level summary of these personalities, 
combining quantitative metrics with qualitative archetypes to serve as a 
reference for the detailed profiles that follow.

The coding archetypes of 
leading LLMs 

Claude Sonnet 4 OpenCoder-8B Llama 3.2 90B GPT-4o Claude 3.7 Sonnet

Coding 
archetype

The senior 
architect

The rapid 
prototyper

The unfulfilled 
promise

The efficient 
generalist

The balanced 
predecessor

Functional skill 
(pass rate %) 77.04% 60.43% 61.47% 69.67% 72.46%

Issue density 
(Issues/KLOC) 19.48 32.45 26.20 26.08 22.82

Verbosity 
(LOC) 370,816 120,288 196,927 209,994 288,126

Cognitive 
complexity 47,649 13,965 20,811 26,450 42,220

Dominant flaw 
type (% of 
total issues)

92.2% code 
smells

92.0% code 
smells

89.9% code 
smells

90.5% code 
smells 92.9% code smells

Table 8: LLM coding archetypes

https://www.sonarsource.com/
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The senior architect [Claude Sonnet 4]

The rapid prototyper [OpenCoder-8B]

This LLM codes like a seasoned and ambitious 
architect tasked with building enterprise-grade 
systems. It exhibits the highest functional skill, 
successfully passing 77.04% of the benchmark 
tests. Its style is verbose and highly complex, 
as it consistently attempts to implement 
sophisticated safeguards, error handling, and 
advanced features, mirroring the behavior of a 
senior engineer.

This very sophistication creates a trap: teams 
may feel the code is safer because it looks 
advanced, while in reality it likely introduces 
more complex, high-severity bugs like 
resource leaks.

The very sophistication of the model creates 
a lot of opportunities for higher-risk bugs 
that plague complex, stateful systems. Its 
unique bug profile reveals a high propensity 
for difficult concurrency and threading bugs 
(9.81% of its total bugs) and a significant rate 
of resource management leaks (15.07% of 
its bugs). The model's strength—its focus on 
generating sophisticated code—is linked to its 
weakness.

This LLM is the brilliant but undisciplined junior 
developer, perfect for getting a concept off 
the ground with maximum speed. Its style is 
defined by conciseness, producing the least 
amount of code (120,288 LOC) to achieve 
functional results. This makes it an ideal choice 
for hackathons, proofs-of-concept, and rapid 
prototyping where time-to-first-result is the 
primary goal.

But, while the immediate productivity gain is 
obvious, it comes at the cost of the highest 
issue density, burying the project in technical 
debt that throttles long-term productivity and 
maintainability.

This model is a technical debt machine, 
exhibiting the highest issue density of all 
models at 32.45 issues per thousand lines 
of code. Its most prominent personality flaw 
is a notable tendency to leave behind dead, 
unused, and redundant code, which accounts 
for 42.74% of all its code smells. 

This is a classic sign of rushed, iterative 
development without the discipline of cleanup. 
While perfect for a prototype, its code is 
a minefield of maintainability issues that 
would require a significant refactoring effort 
by a senior human developer or a robust 
governance tool, before it could be considered 
for production.

https://www.sonarsource.com/
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The unfulfilled promise [Llama 3.2 90B]

Given its scale and backing, this model 
represents what should be a top-tier 
contender, but its performance in our analysis 
suggests its promise is largely unfulfilled. Its 
functional skill is mediocre, with a pass rate of 
61.47%, only marginally better than the much 
smaller open-source model we tested.

However, the model’s most alarming 
characteristic is its remarkably poor security 

posture. The model exhibits a profound 
security blind spot, with an alarming 70.73% 
of the vulnerabilities it introduces being of 
‘BLOCKER’ severity—the highest proportion 
of any model evaluated. This security profile 
suggests that without an aggressive external 
verification layer, deploying this model in a 
production environment carries substantial 
risk.

The efficient generalist [GPT-4o]

This LLM is a reliable, middle-of-the-road 
developer. Its style is not as verbose as 
the “senior architect” nor as concise as the 
“rapid prototyper”—it is a jack-of-all-trades, a 
common choice for general-purpose coding 
assistance. Its code is moderately complex and 
its functional performance is solid.

Its distinctive personality trait, however, is 
revealed in the type of mistakes it makes. 
While generally avoiding the most severe 
‘BLOCKER’ or ‘CRITICAL’ bugs, it demonstrates 
a notable carelessness with logical precision. 

This is reinforced by its single most common 
bug category: control-flow mistakes, which 
account for a remarkable 48.15% of all its 
bugs (refer to Table 4). 

This paints a picture of a coder who correctly 
grasps the main objective but often fumbles 
the details required to make the code robust. 
The code is likely to function for the intended 
scenario but will be plagued by persistent 
problems that compromise quality and 
reliability over time.

The balanced predecessor [Claude 3.7 Sonnet]

This model represents a capable and well-
rounded developer from a prior generation, 
exhibiting strong functional skills with a 
72.46% benchmark pass rate. Its most 
defining personality trait is its communication 
style—it is an exceptional documentarian, 
producing code with a remarkable 16.4% 
comment density—nearly three times higher 
than its successor and the highest of any 
model evaluated. This makes its code uniquely 

readable and easier for human developers to 
understand.

But here's the catch with the balanced 
predecessor: while it appears more stable 
and less reckless than its more ambitious 
successor, it is by no means a “safe” model. It 
still introduces a high proportion of ‘BLOCKER’ 
vulnerabilities (56.03%) and suffers from the 
same foundational flaws as the other models.

https://www.sonarsource.com/
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Comparing an older model (Claude 3.7 Sonnet, “the balanced predecessor”) 
with its successor (Claude Sonnet 4, “the senior architect”) uncovers the most 
surprising and unexpected finding of this analysis: a model “upgrade” can mask 
increases in real-world risk. The very process of making a model “more capable” 
can also make it more reckless.

The data reveal a clear and troubling issue. The newer Claude Sonnet 4 
shows a distinct improvement on the typical performance benchmarks, with 
its benchmark pass rate climbing to 77.04% from its predecessor's 72.46%. 
However, this gain in functional performance is paid for with a marked increase 
in the severity of its mistakes.

As the table starkly illustrates, while the newer model performed better on the 
benchmark tests, the bugs and security vulnerabilities it created were almost 
twice as likely to be of ‘BLOCKER’ severity. 

To solve more complex problems, the newer model generally proposes more 
sophisticated and intricate solutions. These ambitious solutions, while sometimes 
successful, are inherently more fragile and carry a greater risk of severe errors 
like concurrency bugs and resource leaks, the exact categories in which Claude 
Sonnet 4 showed a greater propensity.

The result is a new generation of models that may score higher on the 
performance benchmarks but are also demonstrably prone to more severe errors 
when they fail. 

Risk observations with 
newer models

Metric Claude 3.7 Sonnet (Older) Claude Sonnet 4 (Newer) Change

Benchmark pass rate 72.46% 77.04% +6.3%

% of bugs that are 'BLOCKER' 7.10% 13.71% +93.1%

% of vulnerabilities that are 
'BLOCKER' 56.03% 59.57% +6.3%

Table 9: Claude 3.7 Sonnet vs. Claude Sonnet 4

https://www.sonarsource.com/
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Functional performance benchmarks are a vital measure of an LLM’s core 
problem-solving capabilities and have been a key part of documenting the 
industry's rapid progress. Our findings are not intended to diminish these 
achievements, but to enrich them with additional context and understanding. 

As this report has shown, it is also important to study the crucial non-functional 
attributes—that is security, engineering discipline, and maintainability—that 
ultimately govern the total cost and risk of AI-assisted development. 

This deeper analysis is revealing: it shows that all LLMs share some common 
strengths and weaknesses, and that each individual model possesses a unique 
and measurable personality, from the ambitious “senior architect” (Claude 
Sonnet 4) to the speedy “rapid prototyper” (OpenCoder-8B). 

Regardless of whether code is written by developers or an LLM, the “trust 
but verify” approach, long advocated by Sonar, has never been more critical. 
It dictates that a consistent process for reviewing security, reliability, and 
maintainability is essential for every piece of code from any source. 

As we accelerate into a world where most code is written with AI assistance, 
harnessing the power of these models responsibly requires expanding our 
view beyond the performance benchmark, opening ourselves to a richer, more 
nuanced view of the leading LLMs and their unique personalities.

Conclusion: a new mandate for 
evaluating the leading LLMs
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