
A State of Code Report

The Coding
Personalities of
Leading LLMs

sonar.com 2/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

Table of Contents
Introduction 3

Our approach 4

Foundation of shared strengths and flaws 5

Shared strengths 5

Shared flaws 7

Coding personalities 12

Personality traits 12

Coding archetypes 16

The senior architect 17

The rapid prototyper 17

The unfulfilled promise 18

The efficient generalist 18

The balanced predecessor 18

Risk observations with newer models 19

Conclusion 20

https://www.sonarsource.com/

sonar.com 3/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

Introduction: Beyond the
performance benchmark

AI has embedded itself in the software development lifecycle (SDLC) at an
extraordinary speed. Tools such as Claude Code, Cursor, and GitHub Copilot are
increasingly standard and necessary tools for software developers. Underlying
all of these tools are Large Language Models (LLMs), some general purpose
from companies like OpenAI, Anthropic, Meta, and Google, and some specially
built for coding use cases.

Understanding the true capabilities of these models is of critical importance
as the industry develops. However, the typical methods for evaluating these
capabilities do not give a complete, high-resolution picture. A primary evaluation
approach focuses on assessing LLM performance against benchmarks that
test their ability to solve difficult coding challenges—what we consider to be an
important but narrow test.

This relentless focus on performance benchmarks leads to what experts
describe as “super spiky capability distributions.” As we will show in this report,
this focus on performance benchmarks leads to LLMs that can solve difficult
coding challenges, but do not necessarily write good code—that is, code that is
reliable, secure, and maintainable.

It is critical that we move beyond relying only on performance benchmarks,
and start to understand the full mosaic of capabilities of coding models, their
personalities and habits, good and bad. By doing so, we can ensure that we have
a more nuanced understanding that helps us more consistently select the best
model for the job to be done.

https://www.sonarsource.com/

sonar.com 4/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

Our approach: A deep analysis of
LLM-generated code
To move beyond the standard performance benchmarks, Sonar developed
a proprietary analysis framework for assessing LLM-generated code. This
approach leverages the core strengths of the SonarQube Enterprise static
analysis engine, which is built on over 16 years of experience in detecting
complex bugs, vulnerabilities, and code smells in enterprise-grade software.

We combined this deep code analysis with best practices from coding model
evaluations, applying it to five leading LLMs: Anthropic's Claude Sonnet
4 and 3.7, OpenAI's GPT-4o, Meta's Llama 3.2 90B, and the open source
OpenCoder-8B. Each model was tasked with completing over 4,442 distinct Java
programming assignments from recognized sources, including MultiPL-E-mbpp-
java, MultiPL-E-humaneval-java,and ComplexCodeEval.

Our goal was to provide a clear, objective analysis that creates opportunities
for improvement and informed decision-making. For model developers, our
findings offer a roadmap that goes beyond traditional performance benchmark
scores, highlighting concrete areas to improve their coding models. For software
developers and their organizations, our work provides critical insights needed to
choose the right models for the right tasks, and ensure they are used safely and
effectively.

https://www.sonarsource.com/
https://www.sonarsource.com/
https://www.sonarsource.com/products/sonarqube/
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2409.10280

sonar.com 5/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

Before we discuss the unique personalities of each LLM, it is important to
highlight the common foundation of strength and weaknesses that all models
share. This section will detail these shared characteristics, starting with the
powerful capabilities that have driven their widespread adoption.

Shared strengths
The code generation capabilities of large language models are fundamental to
their growing application in software development. Our benchmark analysis of
the five prominent models provides quantitative data confirming a consistent set
of shared competencies.

The benchmark data point to a set of significant and consistent strengths shared
across the evaluated models. The following sections explore these key areas of
proficiency in greater detail.

MultiPL-E
benchmarks Claude Sonnet 4 Claude 3.7

Sonnet GPT-4o Llama 3.2 90B OpenCoder-8B

HumanEval
(158 tasks) 95.57% 84.28% 73.42% 61.64% 64.36%

MBPP
(385 tasks) 69.43% 67.62% 68.13% 61.40% 58.81%

Weighted test
Pass@1 avg 77.04% 72.46% 69.67% 61.47% 60.43%

A foundation of shared
strengths and shared flaws

Table 1: LLM performance on MultiPL-E Java benchmarks

https://www.sonarsource.com/

sonar.com 6/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

Syntactic and boilerplate generation
The ability to generate syntactically valid code is a fundamental requirement for
a coding assistant. The design of our benchmarks provides a direct measure
of this skill, as syntactically flawless code is a prerequisite for passing any
functional test. The high pass rates recorded in the table are therefore a clear
indicator of this reliability. For example, Claude Sonnet 4's success rate of
95.57% on HumanEval demonstrates a very high capability to produce valid,
executable code.

Technical competence
Beyond correct syntax, the models demonstrate robust capabilities in algorithmic
problem-solving. The benchmark problems are, by design, direct tests of
this technical competence, requiring the application of algorithms and data
structures. The “weighted test Pass@1 average” provides a balanced measure
of this capability, and the scores achieved by models like Claude 3.7 Sonnet
(72.46%) and GPT-4o (69.67%) confirm a high degree of reliability in producing
correct solutions.

Conceptual translation
Finally, our analysis points to the models’ notable capability for conceptual
translation across different programming languages. The provided benchmark
data reflects performance specifically on MultiPL-E Java, where the leading
models demonstrate a high degree of proficiency.

This strength, however, is not confined to a single language family. In a parallel
evaluation using Python, we observed a consistent and similarly high level
of performance. Maintaining competence across two syntactically diverse
languages like Java and Python is a clear indicator of the models' adaptability.
It suggests their core capability is understanding abstract logic and translating
it across linguistic environments, confirming their utility as versatile tools for
developers working with varied technology stacks.

https://www.sonarsource.com/

sonar.com 7/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

These issues are further underscored by the severity of the vulnerabilities
introduced. Our analysis found that a majority of vulnerabilities for every model
are of ‘BLOCKER’ severity, the highest possible rating.

Shared flaws
While the shared strengths drive AI’s utility in software development and drive
adoption, we also found a consistent pattern of shared weaknesses that, when
unrecognized and unaddressed, diminishes the overall effectiveness of the
coding models and undermines the integrity of the code itself.

A lack of security consciousness
The single most alarming shared trait across all models is a fundamental lack
of security awareness. While the exact prevalence varies between models, all
evaluated LLMs produce a frighteningly high percentage of vulnerabilities with
the highest severity ratings. For Llama 3.2 90B, over 70% of its vulnerabilities are
‘BLOCKER’; for GPT-4o, it's 62.5%; and for Claude Sonnet 4, it is nearly 60%.

Critical flaws like path-traversal, injection and hard-coded credentials are
common across the board. The table below breaks down the specific types of
security vulnerabilities introduced by each model, illustrating the shared struggle
with concepts like taint tracking and recognizing sensitive data.

Category Claude-Sonnet
4 (%)

Claude-3.7
Sonnet (%)

GPT-4o
(%)

Llama 3.2
90B (%)

OpenCoder-8B
(%)

Path-traversal & Injection 34.04 31.03 33.93 26.83 28.36

Hard-coded credentials 14.18 10.34 17.86 23.58 29.85

Cryptography misconfiguration 24.82 23.28 19.64 22.76 22.39

XML external entity (XXE) 10.64 15.52 13.39 19.51 5.97

Inadequate I/O error-handling 4.96 7.76 7.14 4.88 7.46

Certificate-validation omissions 2.84 4.31 2.68 0 2.99

JSON-injection risk 0.71 0 0.89 0.81 1.49

JWT signature not verified 0 0 0 0 1.49

Other 7.8 7.76 4.46 1.63 0

Table 2: Subcategories of security vulnerabilities and their origins (% of total vulnerabilities for model)

https://www.sonarsource.com/
https://docs.sonarsource.com/sonarqube-server/latest/instance-administration/analysis-functions/instance-mode/standard-experience/

sonar.com 8/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

This is not a matter of occasional hallucination but rather a structural failure
rooted in the LLMs’ foundational design and training. LLMs struggle to prevent
injection flaws because doing so requires taint-tracking from an untrusted
source to a sensitive sink, a non-local data flow analysis that is beyond the
scope of their typical context window. They generate hard-coded secrets (like
passwords) because these flaws exist in their training data.

LLM BLOCKER CRITICAL MAJOR MINOR

Claude Sonnet 4 59.57 28.37 5.67 6.38

Claude 3.7 Sonnet 56.03 28.45 5.17 10.34

GPT-4o 62.50 23.21 5.36 8.93

Llama 3.2 90B 70.73 22.76 1.63 4.88

OpenCoder-8B 64.18 26.87 1.49 7.46

Table 3: Vulnerability distribution (% of total vulnerabilities)

https://www.sonarsource.com/

sonar.com 9/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

A struggle with engineering discipline
All LLMs evaluated demonstrate a consistent struggle with the core tenets of
software engineering, particularly in areas that require a global, context-aware
understanding of the application. Severe bugs like resource leaks (e.g., failing
to close file streams) and API contract violations (e.g., ignoring critical error
return values) appear consistently across all models. For example, SonarQube
rule java:S2095 (“Resources should be closed”) flagged 54 instances for Claude
Sonnet 4, 25 for GPT-4o, and 50 for Llama 3.2 90B.

The table below details the most common bug categories.

Category Claude Sonnet
4 (%)

Claude 3.7
Sonnet (%) GPT-4o (%) Llama 3.2 90B

(%)
OpenCoder-8B
(%)

Control-flow
mistake 14.83 23.62 48.15 31.06 21.37

API contract
violation 10.29 14.12 8.64 14.9 19.35

Exception
handling 16.75 16.71 11.6 14.39 14.52

Resource
management /
leak

15.07 8.36 7.41 12.88 9.68

Type-safety /
casts 11.24 12.97 7.9 6.82 7.66

Concurrency /
threading 9.81 1.44 1.73 1.26 2.82

Null / data-
value issues 7.89 7.49 8.89 5.81 6.85

Performance /
structure 4.31 6.34 3.95 2.78 5.24

Pattern / regex 2.63 1.15 0.74 0.25 2.42

Data-structure
bug 1.44 1.15 0 1.01 1.61

Serialization /
serializable 0 0.58 0 0.76 1.61

Other 5.74 6.05 0.99 8.08 6.85

Table 4: Subcategories of bugs and their origins (% of total bugs for model)

https://www.sonarsource.com/
https://rules.sonarsource.com/java/RSPEC-2095/

sonar.com 10/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

This overwhelming proportion of code smells suggests an inherent tendency in
LLMs towards generating syntactically correct but structurally suboptimal code.
The specific types of code smells reveal a consistent struggle with non-local
issues like dead code and a lack of adherence to design best practices. As these
data demonstrate, every LLM model is actively generating a legacy of technical
debt from the moment it writes its first line of code.

An inherent bias towards messy code
Perhaps the most fundamental shared flaw is a deep, inherent tendency towards
producing “messy” code. The data are stark and unambiguous: for all models
evaluated, code smells constitute over 90% of all issues found. These are not
functional bugs but indicators of poor structure, low maintainability, and high
complexity that lead to long-term technical debt.

LLM % Bugs % Vulnerabilities % Code smells

Claude-Sonnet-4 5.85% 1.95% 92.19%

Claude-3.7-Sonnet 5.35% 1.76% 92.88%

GPT-4o 7.41% 2.05% 90.54%

Llama 3.2 90B 7.71% 2.38% 89.90%

OpenCoder-8B 6.33% 1.72% 91.95%

Table 5: Distribution of issue types by LLM (% of total issues)

https://www.sonarsource.com/

sonar.com 11/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

These findings paint a clear picture of the shared baseline for the current
generation of LLMs. On one hand, they share a powerful set of strengths, from
generating syntactically correct code to solving complex algorithmic problems,
which makes their emergence so compelling. On the other hand, they are all
built with the same blind spots: a consistent inability to write secure code, a
struggle with engineering discipline, and an inherent bias towards generating
technical debt.

To effectively leverage AI in coding, developers need to be prepared to
recognize and compensate for the weaknesses in the models. Understanding
the shared strengths and flaws is a crucial first step. However, just as every
developer has their own personality and coding style, LLMs also exhibit their
own individual styles. Security, quality, and reliability issues come to life in
different ways in different models, and it is crucial to understand the nuances to
get the best results.

Category
Claude
Sonnet 4
(%)

Claude 3.7
Sonnet
(%)

GPT-4o
(%)

Llama 3.2 90B
(%)

OpenCoder-8B
(%)

Dead / unused / redundant
code 14.83 17.43 26.3 34.82 42.74

Design / framework best
practices 22.26 18.58 20.81 18.84 12.45

Assignment / field / scope
visibility 11.96 15.35 13.21 11.32 11.95

Collection / generics /
param / type 13.94 11.23 9.92 9.03 7.89

Regex / pattern / string /
format 13.7 11.8 7.36 6.81 5.29

Cognitive / computational
complexity 4.25 8.43 3.73 2.67 2.79

Control / conditional-logic
smell 4.67 3.91 4.03 3.02 2.2

Deprecation / obsolete 2.01 2.34 2.08 2.89 4.01

Naming / style /
documentation 2.69 2.5 2.84 2.16 1.89

Exception-handling smell 0.05 0.08 0.06 0.02 0.06

Other 9.64 8.33 9.64 8.41 8.72

Table 6: Subcategories of code smells and their origins (% of total code smells for model)

https://www.sonarsource.com/

sonar.com 12/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

If the LLMs have many shared strengths and flaws, why does each LLM’s
code feel so different in production? This section confronts that apparent
contradiction. Our analysis shows that each LLM has a unique and inherent style,
a measurable “coding personality.”

Coding personality traits
The evidence for these distinct coding personalities is not anecdotal—it is
quantifiable in the most basic structural metrics of the generated code.

Our analysis groups these metrics into three primary traits that define each
model’s coding style:

• Verbosity: The sheer volume of code a model generates to solve a given set of
tasks.

• Complexity: The structural and logical intricacy of the generated code,
measured by metrics like cyclomatic and cognitive complexity.

• Communication and documentation: The density of comments in the code,
which reveals the model's tendency to explain its work.

The coding personalities of
leading LLMs

https://www.sonarsource.com/

sonar.com 13/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

The following table presents the foundational data for this analysis, compiling
these key metrics from 4,442 identical programming tasks to establish a
quantitative baseline for each model's unique signature.

Table 7: Comparative code generation metrics across LLMs (4,442 Tasks)

Claude
Sonnet 4

Claude 3.7
Sonnet GPT-4o Llama 3.2 90B OpenCoder-

8B

Lines of code (LOC) 370816 288126 209994 196927 120288

Statements 148932 116433 83466 75368 41510

Functions 46235 27496 24309 22694 8338

Classes 12832 10649 10475 8996 5530

Files 4442 4442 4442 4442 4442

Comment lines 20051 56459 9692 15514 13165

Comments (%) 5.10% 16.40% 4.40% 7.30% 9.90%

Cyclomatic complexity 81667 55485 44387 37948 18850

Cognitive complexity 47649 42220 26450 20811 13965

https://www.sonarsource.com/

sonar.com 14/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

Verbosity
The most immediate personality trait that emerges is a model's verbosity. An
analysis of the total lines of code (LOC) generated to solve the same set of
4,442 tasks reveals a huge stylistic difference. For instance, Claude Sonnet 4
demonstrated a highly-verbose personality, generating 370,816 LOC. In stark
contrast, the OpenCoder-8B model, which was far more concise, producing only
120,288 LOC to address the exact same problems.

This is not a simple matter of length—it reflects a fundamental difference in
approach. One model is expansive and comprehensive, attempting to build a
complete, self-contained solution. The other is direct and economical, aiming
for the quickest route to a working solution. It's not about one being better than
the other, but this seemingly small stylistic decision has a big impact. A verbose
model may produce code that is harder to review and navigate, while a concise
model might omit important context or safeguards, demanding more effort from
the human developer to make it production ready.

Complexity
Beyond sheer volume, the inherent complexity of the generated code quantifies
the thinking style of the AI. Using metrics like cyclomatic and cognitive
complexity, which measure the structural and logical difficulty of understanding
code, reveals another clear personality trait.

Claude Sonnet 4, the most verbose model, also produced the most intricate
solutions, with a total cognitive complexity score of 47,649. This is more than
three times the complexity of the code from the concise OpenCoder-8B, which
scored 13,965.

This metric serves as a proxy for the model's problem-solving philosophy. A
high-complexity score suggests a personality that favors building elaborate,
multi-layered solutions with many interdependent parts. A low score indicates
a more linear, straightforward approach. This thinking style directly impacts
risk. While complex solutions may be necessary for difficult problems, they also
create a larger surface area for bugs and increase the cognitive load on human
developers who must maintain the code over time.

https://www.sonarsource.com/
https://www.sonarsource.com/learn/cyclomatic-complexity/
https://www.sonarsource.com/resources/cognitive-complexity/
https://www.sonarsource.com/resources/cognitive-complexity/

sonar.com 15/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

Communication and documentation
A third personality trait is the models’ communication style, revealed through
their documentation habits. The density of comments in the generated code
indicates whether the model's style is to explain its work or to assume its logic is
self-evident.

Interestingly, the models are pretty different here. Claude Sonnet 3.7 proved to
be a creative commenter, with a comment density of 16.4%. At the other end of
the spectrum, GPT-4o proved to be less of a documentarian, with only 4.4% of
its code consisting of comments.

This feature has real-world consequences for team collaboration and
maintainability. A well-commented codebase can onboard new developers more
quickly and simplify debugging. An uncommented one becomes cloudy and
difficult to manage. The fact that models exhibit such consistent but different
commenting behaviors underscores that they are not neutral code generators—
they are opinionated authors with distinct communication styles.

These foundational metrics, such as volume, complexity, and documentation
are not just output statistics—they are the behavioral signatures of an AI's
underlying personality, setting the stage for a deeper analysis of their strengths
and weaknesses.

https://www.sonarsource.com/

sonar.com 16/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

With a fuller view of their individual personality traits, we can begin to define
“coding archetypes” for each LLM. Just as a hiring manager assesses a human
candidate's resume, we can build a narrative dossier for each LLM, using a
wealth of data to bring its personality to life. This approach moves beyond
simplistic rankings to provide a nuanced understanding of each model's relative
strengths, weaknesses, and ideal use cases, for any organization looking to
“hire” an AI developer.

The following matrix provides a high-level summary of these personalities,
combining quantitative metrics with qualitative archetypes to serve as a
reference for the detailed profiles that follow.

The coding archetypes of
leading LLMs

Claude Sonnet 4 OpenCoder-8B Llama 3.2 90B GPT-4o Claude 3.7 Sonnet

Coding
archetype

The senior
architect

The rapid
prototyper

The unfulfilled
promise

The efficient
generalist

The balanced
predecessor

Functional skill
(pass rate %) 77.04% 60.43% 61.47% 69.67% 72.46%

Issue density
(Issues/KLOC) 19.48 32.45 26.20 26.08 22.82

Verbosity
(LOC) 370,816 120,288 196,927 209,994 288,126

Cognitive
complexity 47,649 13,965 20,811 26,450 42,220

Dominant flaw
type (% of
total issues)

92.2% code
smells

92.0% code
smells

89.9% code
smells

90.5% code
smells 92.9% code smells

Table 8: LLM coding archetypes

https://www.sonarsource.com/

sonar.com 17/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

The senior architect [Claude Sonnet 4]

The rapid prototyper [OpenCoder-8B]

This LLM codes like a seasoned and ambitious
architect tasked with building enterprise-grade
systems. It exhibits the highest functional skill,
successfully passing 77.04% of the benchmark
tests. Its style is verbose and highly complex,
as it consistently attempts to implement
sophisticated safeguards, error handling, and
advanced features, mirroring the behavior of a
senior engineer.

This very sophistication creates a trap: teams
may feel the code is safer because it looks
advanced, while in reality it likely introduces
more complex, high-severity bugs like
resource leaks.

The very sophistication of the model creates
a lot of opportunities for higher-risk bugs
that plague complex, stateful systems. Its
unique bug profile reveals a high propensity
for difficult concurrency and threading bugs
(9.81% of its total bugs) and a significant rate
of resource management leaks (15.07% of
its bugs). The model's strength—its focus on
generating sophisticated code—is linked to its
weakness.

This LLM is the brilliant but undisciplined junior
developer, perfect for getting a concept off
the ground with maximum speed. Its style is
defined by conciseness, producing the least
amount of code (120,288 LOC) to achieve
functional results. This makes it an ideal choice
for hackathons, proofs-of-concept, and rapid
prototyping where time-to-first-result is the
primary goal.

But, while the immediate productivity gain is
obvious, it comes at the cost of the highest
issue density, burying the project in technical
debt that throttles long-term productivity and
maintainability.

This model is a technical debt machine,
exhibiting the highest issue density of all
models at 32.45 issues per thousand lines
of code. Its most prominent personality flaw
is a notable tendency to leave behind dead,
unused, and redundant code, which accounts
for 42.74% of all its code smells.

This is a classic sign of rushed, iterative
development without the discipline of cleanup.
While perfect for a prototype, its code is
a minefield of maintainability issues that
would require a significant refactoring effort
by a senior human developer or a robust
governance tool, before it could be considered
for production.

https://www.sonarsource.com/

sonar.com 18/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

The unfulfilled promise [Llama 3.2 90B]

Given its scale and backing, this model
represents what should be a top-tier
contender, but its performance in our analysis
suggests its promise is largely unfulfilled. Its
functional skill is mediocre, with a pass rate of
61.47%, only marginally better than the much
smaller open-source model we tested.

However, the model’s most alarming
characteristic is its remarkably poor security

posture. The model exhibits a profound
security blind spot, with an alarming 70.73%
of the vulnerabilities it introduces being of
‘BLOCKER’ severity—the highest proportion
of any model evaluated. This security profile
suggests that without an aggressive external
verification layer, deploying this model in a
production environment carries substantial
risk.

The efficient generalist [GPT-4o]

This LLM is a reliable, middle-of-the-road
developer. Its style is not as verbose as
the “senior architect” nor as concise as the
“rapid prototyper”—it is a jack-of-all-trades, a
common choice for general-purpose coding
assistance. Its code is moderately complex and
its functional performance is solid.

Its distinctive personality trait, however, is
revealed in the type of mistakes it makes.
While generally avoiding the most severe
‘BLOCKER’ or ‘CRITICAL’ bugs, it demonstrates
a notable carelessness with logical precision.

This is reinforced by its single most common
bug category: control-flow mistakes, which
account for a remarkable 48.15% of all its
bugs (refer to Table 4).

This paints a picture of a coder who correctly
grasps the main objective but often fumbles
the details required to make the code robust.
The code is likely to function for the intended
scenario but will be plagued by persistent
problems that compromise quality and
reliability over time.

The balanced predecessor [Claude 3.7 Sonnet]

This model represents a capable and well-
rounded developer from a prior generation,
exhibiting strong functional skills with a
72.46% benchmark pass rate. Its most
defining personality trait is its communication
style—it is an exceptional documentarian,
producing code with a remarkable 16.4%
comment density—nearly three times higher
than its successor and the highest of any
model evaluated. This makes its code uniquely

readable and easier for human developers to
understand.

But here's the catch with the balanced
predecessor: while it appears more stable
and less reckless than its more ambitious
successor, it is by no means a “safe” model. It
still introduces a high proportion of ‘BLOCKER’
vulnerabilities (56.03%) and suffers from the
same foundational flaws as the other models.

https://www.sonarsource.com/

sonar.com 19/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

Comparing an older model (Claude 3.7 Sonnet, “the balanced predecessor”)
with its successor (Claude Sonnet 4, “the senior architect”) uncovers the most
surprising and unexpected finding of this analysis: a model “upgrade” can mask
increases in real-world risk. The very process of making a model “more capable”
can also make it more reckless.

The data reveal a clear and troubling issue. The newer Claude Sonnet 4
shows a distinct improvement on the typical performance benchmarks, with
its benchmark pass rate climbing to 77.04% from its predecessor's 72.46%.
However, this gain in functional performance is paid for with a marked increase
in the severity of its mistakes.

As the table starkly illustrates, while the newer model performed better on the
benchmark tests, the bugs and security vulnerabilities it created were almost
twice as likely to be of ‘BLOCKER’ severity.

To solve more complex problems, the newer model generally proposes more
sophisticated and intricate solutions. These ambitious solutions, while sometimes
successful, are inherently more fragile and carry a greater risk of severe errors
like concurrency bugs and resource leaks, the exact categories in which Claude
Sonnet 4 showed a greater propensity.

The result is a new generation of models that may score higher on the
performance benchmarks but are also demonstrably prone to more severe errors
when they fail.

Risk observations with
newer models

Metric Claude 3.7 Sonnet (Older) Claude Sonnet 4 (Newer) Change

Benchmark pass rate 72.46% 77.04% +6.3%

% of bugs that are 'BLOCKER' 7.10% 13.71% +93.1%

% of vulnerabilities that are
'BLOCKER' 56.03% 59.57% +6.3%

Table 9: Claude 3.7 Sonnet vs. Claude Sonnet 4

https://www.sonarsource.com/

sonar.com 20/21

August 2025The Coding Personalities of Leading LLMs – A State of Code Report

Functional performance benchmarks are a vital measure of an LLM’s core
problem-solving capabilities and have been a key part of documenting the
industry's rapid progress. Our findings are not intended to diminish these
achievements, but to enrich them with additional context and understanding.

As this report has shown, it is also important to study the crucial non-functional
attributes—that is security, engineering discipline, and maintainability—that
ultimately govern the total cost and risk of AI-assisted development.

This deeper analysis is revealing: it shows that all LLMs share some common
strengths and weaknesses, and that each individual model possesses a unique
and measurable personality, from the ambitious “senior architect” (Claude
Sonnet 4) to the speedy “rapid prototyper” (OpenCoder-8B).

Regardless of whether code is written by developers or an LLM, the “trust
but verify” approach, long advocated by Sonar, has never been more critical.
It dictates that a consistent process for reviewing security, reliability, and
maintainability is essential for every piece of code from any source.

As we accelerate into a world where most code is written with AI assistance,
harnessing the power of these models responsibly requires expanding our
view beyond the performance benchmark, opening ourselves to a richer, more
nuanced view of the leading LLMs and their unique personalities.

Conclusion: a new mandate for
evaluating the leading LLMs

https://www.sonarsource.com/

sonar.com © 2008-2025, SonarSource S.A, Switzerland. All content is copyright protected. Sonar, SonarSource, SonarQube for IDE, SonarQube
Server, and SonarQube Cloud are trademarks of SonarSource SA. All other trademarks and copyrights are the property of their respective

owners. All rights are expressly reserved.

https://www.sonarsource.com/
https://www.sonarsource.com/

