Executive summary: Coding Personalities of Leading LLMs October 2025

GJD) Sonar

3 LLM coding flaws all leaders
need to know

This executive summary presents key findings from the report, The Coding Personalities
of Leading LLMs, released by Sonar in August of 2025.

The Al productivity promise and its
hidden paradox

Leaders are racing to integrate Al into software development for massive productivity gains,
but this pursuit is full of nuance. While capable of solving complex problems and generating
syntactically correct code, LLMs can systematically introduce business risk, creating a wave of
Al-generated technical debt and security issues that undercut the promise of productivity.

Why functional performance evaluation
of LLMs falls short

The industry’s primary method for evaluating coding LLMs focuses on their ability to solve
difficult, self-contained coding challenges. While these benchmarks are an important measure
of raw technical competence—and the leading models score exceptionally well—they

are dangerously incomplete as a measure of performance for enterprise-grade software
development.

This creates a perverse incentive structure within the Al development ecosystem. Model
developers are rewarded for optimizing for clever solutions that pass tests, often at the expense
of foundational software quality and security principles. The result is a new generation of Al tools
that are demonstrably "smarter" but also more reckless.

sonar.com

© 2008-2025, SonarSource S.A, Switzerland. All content is copyright protected. Sonar, SonarSource, SonarQube for IDE, SonarQube Server, and SonarQube
Cloud are trademarks of SonarSource SA. All other trademarks and copyrights are the property of their respective owners. All rights are expressly reserved.]/5

https://www.sonarsource.com/
https://www.sonarsource.com/resources/the-coding-personalities-of-leading-llms/
https://www.sonarsource.com/resources/the-coding-personalities-of-leading-llms/

Executive summary: Coding Personalities of Leading LLMs

October 2025

Flaw #1

The LLM performance tax: high scores = high risk

The pursuit of higher benchmark scores comes with a direct and quantifiable cost, a
phenomenon best described as the LLM Performance Tax. The highest-performing
models—those that leaders are most likely to select—also generate the most verbose,
complex, and intricate code, imposing a significant tech-debt on development teams.
This tax is paid in the form of longer code review cycles, increased maintenance
overhead, and a greater cognitive load on developers, which ultimately slows innovation.

Cognitive complexity

125k

100k

75k

50k

25k
6

N\

Llama 3.2 90B

+--{ OpenCode-8B

The highest performing
models generate the most

verbose and complex code. I -
GPT-5-minimal

Q
1
1

69% !
o @ ! CCIaude Sonnet 4)

(Claude 3.7 Sonnet)

60%

65% 70% 75%

Functional performance (weighted test Pass@1 avg) key @) Bubble size = lines of code
J

The data reveals a clear correlation between a model's benchmark score and the
complexity of its output. GPT-5 achieves top-tier functional performance at the cost of
generating the most verbose (490,010 LOC) and complex (111,133 cognitive complexity)
code of any model tested. In contrast, the lower-performing OpenCoder-8B produced
just 120,288 lines of code with a complexity score of 13,965—a threefold difference in
both volume and complexity.

This disparity arises because higher-performing models attempt to emulate senior
engineers by implementing sophisticated safeguards,advanced features & catering

to edge cases. While well-intentioned, this ambition results in code that is inherently
more fragile and presents a larger surface area for severe, hard-to-detect bugs. This
dynamic creates a negative feedback loop where the tool adopted to accelerate velocity
introduces a hidden, long-term tax that throttles it, undermining the strategic justification
for its adoption.

sonar.com

© 2008-2025, SonarSource S.A, Switzerland. All content is copyright protected. Sonar, SonarSource, SonarQube for IDE, SonarQube Server, and SonarQube
Cloud are trademarks of SonarSource SA. All other trademarks and copyrights are the property of their respective owners. All rights are expressly reserved.

2[5

https://www.sonarsource.com/

Executive summary: Coding Personalities of Leading LLMs October 2025

Flaw #2

Why new Al models demand deeper scrutiny

The arrival of a new class of "reasoning" models has fundamentally shifted the security
risk profile. While previous models shared a common flaw, the data now reveals a critical
trade-off: newer, more capable models are not necessarily safer—they are simply risky in
a different way.

For non-reasoning models, the data is unequivocal. The majority of vulnerabilities
introduced are of ‘BLOCKER’ severity. Llama 3.2 90B leads this dangerous trend, with
over 70% of its vulnerabilities falling into this category, followed by OpenCoder-8B
(64.18%), GPT-40 (62.50%), and the Claude models, which still register an alarming rate
of nearly 60%.

In contrast, new reasoning models like GPT-5 trade these common, well-understood
flaws for more subtle, implementation-specific ones. At first glance, GPT-5 appears
safer, reducing the proportion of 'BLOCKER' severity vulnerabilities to just 35%. However,
this improvement comes at a cost. The model introduces a much higher rate of advanced
bugs like "Concurrency / Threading" issues (20% of its bugs) and nuanced vulnerabilities
like "Inadequate I/O error-handling" (30% of its vulnerabilities).

e N
LLMs show a lack of security consciousness
All leading LLMs produce a high percentage of BLOCKER severity vulnerabilities

(GPT-5 (minimal)) [35.00% |]
(Claude 3.7 Sonnet) | 56.03% |]
(Claude sonnet4) [59.57% |]
(GPT-40) [62.50% |]
(opencoder-88) | 64.18% |]
(Liama 3.2908) [70.73% |)

} [] Blocker severity [Another severities)

When developers use these tools without an independent verification layer, they

are not just accelerating coding—they are automating the injection of high-severity
vulnerabilities across the organization's entire software portfolio. This transforms Al from
a productivity tool into an enterprise-wide liability, creating a systemic risk profile that
manual review processes cannot possibly contain.

© 2008-2025, SonarSource S.A, Switzerland. All content is copyright protected. Sonar, SonarSource, SonarQube for IDE, SonarQube Server, and SonarQube
sonar.com Cloud are trademarks of SonarSource SA. All other trademarks and copyrights are the property of their respective owners. All rights are expressly reserved.

3/5

https://www.sonarsource.com/

Executive summary: Coding Personalities of Leading LLMs October 2025

Flaw #3

Messy code: The hidden technical debt iceberg

Beyond the immediate and visible dangers of bugs and vulnerabilities lies a far larger and
more insidious problem: messy code. While critical flaws are alarming, they represent
only the tip of the iceberg. The vast, hidden majority of issues generated by LLMs—
over 90% for every model tested—are code smells. These are not functional errors

but indicators of poor structure, low maintainability, and high complexity that create a
massive, long-term drag on productivity.

This overwhelming proportion of code smells indicates an inherent tendency in all
LLMs to generate syntactically correct but structurally suboptimal code. Every model is
actively generating a legacy of technical debt from the moment it writes its first line of
code. This problem is exacerbated by new reasoning models like GPT-5, which not only
continue this trend but dramatically increase the severity of the issues. This "messy"
code is significantly harder for human developers to read, modify, and build upon. As a
result, every subsequent bug fix or feature addition takes longer, slowing down future
development cycles and increasing the time required to onboard new engineers.

Beyond bugs and vulnerabilities, LLMs tend to produce “messy code”

] 0 o/o [of issues are bugs and vulnerabilities]

of issues are code smells indicating

9 0 o/ poor structure, low maintainability,
o and high complexity

This is the functional definition of technical debt, and the Al-generated code smells
represent a hidden, compounding "interest" on that debt. For a CIO or VP of Engineering,
this translates directly to a declining return on investment from their development teams
over time. The software assets being built are inherently less valuable and more costly to
maintain, reframing the issue of code quality as a core financial and strategic concern.

© 2008-2025, SonarSource S.A, Switzerland. All content is copyright protected. Sonar, SonarSource, SonarQube for IDE, SonarQube Server, and SonarQube
sonar.com Cloud are trademarks of SonarSource SA. All other trademarks and copyrights are the property of their respective owners. All rights are expressly reserved. 4/5

https://www.sonarsource.com/

Executive summary: Coding Personalities of Leading LLMs October 2025

-
L
\
L4 [y
’ .

The strategic imperative: Adopting a
“trust but verify” approach

Leaders must trust in the powerful ability of LLMs to accelerate the initial stages of
development and solve complex problems. However, they must also recognize that
these models are probabilistic systems with deep, inherent flaws. Therefore, every line
of Al-generated code must be verified by an independent, deterministic analysis layer
before it enters a production codebase.

This verification requires a huanced understanding that each LLM possesses a unique
and measurable "coding personality," with its own distinct strengths and risk profile. A
one-size-fits-all approach to Al governance is insufficient. Leaders must be equipped
to manage the specific trade-offs of each model, from the ambitious but fragile "Senior
Architect" to the speedy but debt-ridden "Rapid Prototyper.”

Go deeper - Explore the six personalities of leading LLMs

Conclusion

By moving beyond simplistic benchmarks and adopting a sophisticated, risk-aware
"trust but verify" framework, organizations can resolve the Al productivity paradox. This
approach provides the essential governance needed to de-risk Al adoption, turning what
is currently a high-stakes bet into a sustainable competitive advantage. It empowers
teams to harness the full power of Al to innovate safely and effectively, ensuring that the
code they deliver is not only functional but also secure, reliable, and maintainable.

Read the full report

sonar.com

© 2008-2025, SonarSource S.A, Switzerland. All content is copyright protected. Sonar, SonarSource, SonarQube for IDE, SonarQube Server, and SonarQube
Cloud are trademarks of SonarSource SA. All other trademarks and copyrights are the property of their respective owners. All rights are expressly reserved. 5/5

https://www.sonarsource.com/
https://www.sonarsource.com/resources/the-coding-personalities-of-leading-llms/
https://www.sonarsource.com/resources/the-coding-personalities-of-leading-llms/
https://www.sonarsource.com/sem/the-coding-personalities-of-leading-llms/

sondar.com © 2008-2025, SonarSource S.A, Switzerland. All content is copyright protected. Sonar, SonarSource, SonarQube for IDE, SonarQube
Server, and SonarQube Cloud are trademarks of SonarSource SA. All other trademarks and copyrights are the property of their respective
owners. All rights are expressly reserved.

https://www.sonarsource.com/
https://www.sonarsource.com/

